

Impact-Oriented Contextual Scholar Profiling using Self-Citation Graphs

Yuankai Luo, Lei Shi*, Mufan Xu, Yuwen Ji, Fengli Xiao, Chunming Hu, Zhiguang Shan

SIGKDD 2023

Outline

- Background
- GeneticFlow Framework
- Contextual Scholar Profiling
- Evaluation

Background

How to arrange a scholar's academic data to best represent his/her scientific impact?

(a) Indicators and Lists

.....

- (b,c) Bibliometric networks:
- the co-authorship network
- the co-citation network

Scholar profiling should consider the following requirements:

- (a) **Structured-context**: the complex academic data of a single scholar should be integrated into a structured representation.
- (b) **Scholar-centric**: the profile should focus on the target scholar only.
- (c) **Evolution-rich**: the profile should track the evolution of a scholar's scientific impact.

Our idea: GeneticFlow

self-citation graph

effective in profiling the innovation flows of a scholar

GeneticFlow (GF):

A timed, self-citation graph composed of all the papers with impact-oriented paper attributes. (structured-context profiling)

- Core paper: infer the set of core papers to be most representative to scientific impact.

- Core citation: detect the set of selfcitations that truly represent the evolution. Case:

I and II have the same citations, h-index, and paper count.

The scholar on the top is analytically of higher impact than the one on the bottom, with a well-connected, sufficiently-sized, and highly-cited core GF profile in the foreground.

Problem:

The problem is defined as finding the subgraph G^* of G that best represents the impact of the scholar.

How to find the subgraph?

Detect core paper s

The scholar should make a significant contribution to these papers.

- Assumption 1 (author order): A paper's contribution is unequally credited to all authors by author order unless the paper is alphabetically ordered.
- Assumption 2 (advisor-advisee credit sharing): An author's contribution to the paper is also credited to his/her advisor if only:
 a) the advisor is a co-author of the paper; and b) the advisor-advisee relationship is active at the publication date of the paper.
- Theorem (author contribution): On any paper v published at time t, the probability for the *k*th author a_k to contribute significantly can be estimated by

$$p_{cont}(a_k) = max(\frac{1}{k}, \ \max_{\substack{\forall l \neq k}} \frac{p_{AA}(a_k, a_l, t)}{l})$$

• Advisor-advisee detection:

The advisor of an advisee in a research field at time t is characterized as an experienced researcher in the field (D1),

who supervised a sufficient number and ratio of major papers by the advisee (D2)

in a sufficiently long time (D3)

on the early career of the advisee in the field (D4).

$$p_{adr}(a_k, a_l, t) = \frac{N_{a_k}(0, t) - N_{a_k, a_l}(0, t)}{N_{a_k, a_l}(0, t)}$$

$$p_{ade}(a_k, a_l, t) = \max_{\substack{t_0 \le t \le t_1, \ t_1 - t_0 \ge S_{len} \\ numerator \ge S_{adr}}} \frac{\sum_{\substack{t_0 \le t \le t_1, \ \hat{N}_{a_k, a_l}(t) \\ \hat{N}_{a_l}(t_0, t_1)}}{\hat{N}_{a_l}(t_0, t_1)}$$

 $p_{AA}(a_k, a_l, t) = min(1.0, p_{adr}(a_k, a_l, t)) \times min(1.0, p_{ade}(a_k, a_l, t))$

Detect core citations (extend-type citations)

The author uses cited work as basis or starting point. And the new work will probably be an evolution of the scholar's research ideas.

• We use the supervised learning to infer core citations. We manually annotate extend type citations and create the training dataset.

leading to a dataset of 222/1604 positive/negative extend-type citation samples.

• Hand-craft four categories of 20 features (Ft) interpretable for extend-type citation inference.

Category	Name	#Ft	Description	Sig.	Dataset
	# of citations_cited	1	citation count of the cited paper	0.0016	MAG
Paper-meta	year_diff	1	publication year difference between cited and citing papers	0.00027	ARC & MAG
	# of shared_authors	1	the number of shared authors between cited and citing papers	1.9e-48	ARC & MAG
Cite-net	co-citation	2	co-citation metrics between cited and citing papers	≤1.0e-07	ADC & MAC
	bib-coupling	1	bibliographic coupling metrics between cited and citing papers	5.2e-08	AKC & MAG
Temporal	cross-correlation	3	cross-correlations between citation time series of cited/citing papers	≤0.037	MAG
Content	content-similarity	1	cosine similarity between vectorized content of cited and citing papers	1.3e-16	
	# of cite_occurrences	1	the number of total occurrences of in-text citations of this citation link	4.0e-09	
	<pre># of cites_occur_sec</pre>	3	# of cite_occurrences in key sections	≤0.044	ARC
	cite_relative_pos	4	position of in-text citations in paper, section, sub-sec., sentence	≤0.049	
	lexical_pattern	2	appearance of certain phrases: "an/the extension", "our previous", etc.	≤5.0e-11	

Performance of extend-type citation inference using various classifiers, feature sets, and the comparison with literature.
 We select the Extra-Tree model as the final classifier.

Metric		Classifier			Ablation	Previous result			
	Extra-trees	MLP	DNN	(-) Paper-meta	(-) Cite-net	(-) Temporal	(-) Content	[49][51][35] merged	Report in [35]
F1 score	.646±.014	.543±.018	.544±.015	.636±.007	.639±.010	.639±.005	.471±.009	.418±.019	.403±.029
AUC	.902±.005	$.806 \pm .016$	$.785 \pm .014$.871±.009	.898±.006	.899±.005	.796±.008	.841±.009	.775±.017
ACC	$.924 {\pm} .002$	$.901 \pm .004$	$.899 \pm .004$	$.921 \pm .002$	$.922 \pm .001$	$.924 \pm .002$	$.895 \pm .002$	$.949 \pm .001$.976±.001

Evaluation

- The proposed GF profiling method is mainly applied to MAG, which covers 237M papers from all science areas, 240M authors, and 1.63B citations.
- To validate the effectiveness of GF profiling, we consider the task of inferring major scientific award recipients.

CS	Awards	# of awardees	Sample	Full GF profile: #	Core profile		
sub-field	(except ACM fellow & Turing award)	(top-500 scholars)	list	Awarded (50)	Others (150)	Nodes	Edges
NLP-ARC	ACL Lifetime Achievement Award / Fellow	77	#1~#207	$121 \pm 56,205 \pm 173$	$93\pm50,153\pm134$	66.5%	12.8%
Database	SIGMOD Innovations Award	114	#1~#247	$118 \pm 61,166 \pm 126$	74±36,112±79	64.0%	12.8%
Security	SIGSAC Outstanding Innovation Award	81	#1~#208	138±79,190±167	$123 \pm 66, 145 \pm 105$	65.5%	18.3%
DM	SIGKDD/ICDM Innovations/Research Award	108	#1~#235	$169 \pm 136, 305 \pm 392$	$133\pm66,233\pm181$	65.9%	25.1%
HCI	SIGCHI Lifetime Research Award / Academy	117	#1~#251	$113\pm61,160\pm145$	$99 \pm 51,135 \pm 94$	63.8%	29.9%
SE	SIGSOFT Outstanding Research Award	56	#1~#369	81±41,86±85	69±35,67±52	63.6%	12.5%
TCS	SIGACT Donald E. Knuth Prize	127	#1~#239	114±47,215±170	99±43,202±150	N/A	N/A
PL	SIGPLAN PL Achievement Award	135	#1~#244	$90{\pm}34,165{\pm}134$	$87 \pm 37, 187 \pm 180$	N/A	N/A

 We select 8 sub-fields of CS. In each field, we only consider the highest-class technical achievement/innovation awards plus ACM fellow and Turing award. And we sample 200 scholars including 50 award recipients and 150 other scholars.

- To apply GF methods to downstream tasks, we introduce graph neural network (GNN) models to learn high performance representation of profiling results.
- Node attributes:
- the paper's total citation count, the publication date,
- the scholar's order in the paper, the paper's topic vector.

F1 measure in the award inference task using GeneticFlow and alternative methods.

CS	Geneti	Auth	or-Level In	pact Indic	Bibliometric Networks				
sub-field	Full profile	Best core profile	SVM	XGB	RF	MLP	CC	BC	CA
NLP-ARC	.762±.016 (p<1e-4)	.720±.018 (p=2e-4)	.632±.012	.636±.013	.621±.019	.629±.016	.531±.030	.578±.021	.473±.034
Database	.634±.018 (p=0.034)	.638±.016 (p=0.012)	$.517 \pm .020$	$.546 \pm .021$	$.526 \pm .020$	$.517 \pm .016$	$.550 \pm .021$	$.588 \pm .012$	$.501 \pm .035$
Security	.606±.020 (p=0.044 ¹)	.551±.022	$.557 \pm .025$	$.572 \pm .016$	$.548 \pm .018$	$.589 \pm .021$	$.576 \pm .017$	$.572 \pm .018$	$.528 \pm .021$
DM	.653±.020 (p=0.007)	.627±.014 (p= 0.045)	$.590 \pm .012$	$.533 \pm .018$	$.574 \pm .018$.574±.016	$.563 \pm .022$.569±.019	$.476 \pm .020$
HCI	.644±.018 (p=1e-4)	.625±.016 (p=0.001)	$.562 \pm .011$	$.558 \pm .017$	$.548 \pm .025$	$.528 \pm .017$	$.551 \pm .024$	$.527 \pm .022$	$.466 \pm .029$
SE	.665±.011 (p=0.023)	.668±.009 (p=0.014)	.596±.011	$.558 \pm .016$	$.512 \pm .020$	$.593 \pm .014$	$.607 \pm .023$	$.595 \pm .019$	$.523 \pm .028$

The performance of full/core GF profiles with varying edge percentages.

Case studies: https://vimeo.com/795348791/

Thanks for listening!